An introduction to several fundamental and practically-relevant areas of numerical computing with an emphasis on the role of modern optimization. Topics include computational linear algebra, descent methods, basics of linear and semidefinite programming, optimization for statistical regression and classification, trajectory optimization for dynamical systems, and techniques for dealing with uncertainty and intractability in optimization problems. Extensive hands-on experience with high-level optimization software. Applications drawn from operations research, statistics, finance, economics, control theory, and engineering.

Associated course analyses

ORF363-COS323